摘要
在售电侧逐渐市场化的环境下,园区的电力负荷预测对电力市场及园区自身经济运行具有重要意义。为了提高科技园区负荷预测的精度和可靠性,提出采用K折交叉验证的LightGBM算法与LSTM算法的多特征融合算法。首先利用K折交叉验证的LightGBM算法训练第一层特征的预测模型,将其预测结果作为下一层LSTM模型训练的附加特征值。最后将两层模型预测的负荷值根据预测误差加权平均成最终的负荷预测值,结合数据算例表明,采用K折交叉验证的LightGBM算法提高模型的泛化能力,模型融合比单一的模型预测更具优势,能在一定程度上提高预测精度,减小预测误差。
- 单位