摘要
针对近红外透射和吸收双光谱提出一种自适应的去噪方法。同步采集样品的近红外透射谱和吸收谱,在相同分解原则下总体经验模态法分解两组光谱,得到单组分特征模态分量。计算特征模态分量与原透射谱、吸收谱之间相关性,以及两组特征模态分量之间相关性,相关性最小模态分量初判为噪声分量。分析该分量在光谱中点处自相关性,若中点处很大,其他点几乎为零或很小,可以判断该分量为噪声。这种基于模态分量相关性的噪声判别方法称为"3R"法则。剔除噪声分量,重构光谱信号,循环上述分解过程,直到不满足"3R"法则,降噪过程结束。构造理想光谱,叠加噪声,"3R"法降噪效果优于EMD和EEMD低通滤波器,略逊于小波分解。真实光谱实验中,经过上述方法降噪处理过的玉米叶片光谱采用3层BP神经网络建立与叶绿素之间预测模型,"3R"法处理模型具有最大校正相关系数和预测相关系数,最小校正标准差和预测标准差。在四种降噪方法中,"3R"法对光谱谱峰位置和峰高的影响最小。实验表明,"3R"双谱去噪方法无需预设迭代次数,不用考虑分解层数,没有基函数,是自适应的,该方法适合近红外光谱去噪。
- 单位