视觉问答任务旨在给机器输入一幅图像和一相关问题,计算机能够准确作答。针对这一任务,对记忆和注意力机制的神经网络结构进行了深入研究,这类网络显示出问题回答所需的某些推理能力。在分析动态记忆网络的基础上,提出了一种新的动态记忆网络,对原来的DMN内存和输入模块进行改进。结合这些变化,一个新的图像输入模块引入到视觉问答系统中。在DAQUAR-ALL、COCO-QA和VQA数据集上验证了该方法的有效性。实验结果表明,所提出的新的动态记忆模型取得了很好的结果,比一些经典深度方法都更出色。