摘要

为提升风电功率预测精度,提出基于二层分解技术和粒子群优化长短期记忆(PSO-LSTM)神经网络组合的超短期风电功率预测模型。对风电功率原始数据,采用快速集合经验模态分解(FEEMD)方法将其分解为一系列本征模态函数(IMF)分量和余项,针对高频分量采用变分模态分解(VMD)进行二层分解。运用样本熵来解决分量个数过多、计算量繁杂的问题。通过偏自相关函数(PACF)筛选出与预测值关联程度高的元素确定输入维数。最后,选用PSO来优化LSTM相关参数建立预测模型并叠加获得最终值。试验结果表明,该组合模型有效提高了预测精度。