摘要
在地质科学中,正确的岩石分类有助于研究岩石的成因、形成条件、演化过程和工程设计等.由于地质条件的多样性、变异性及复杂性,人们很难对岩石样本进行准确的分类.通过主成分分析法(PCA)从影响火成岩分类的众多氧化物评价指标中提取出主成分,用遗传算法(GA)优化支持向量机参数,并采用支持向量机方法(SVM)对实际火成岩公开数据进行训练,建立了火成岩岩石分类的PCA-GA-SVM模型,同时结合火成岩实际数据将预测结果和基于Levenberg-Marquardt算法改进的BP神经网络模型(LM-BP)的预测结果做了比较.结果表明:基于PCA-GA-SVM模型得到的火成岩分类预测结果精度较LM-BP神经网络有很大的提高,与实际分类相符,有广泛的应用前景.
-
单位河北地质大学