摘要

应用决策树模型、BP神经网络和Logistic回归模型等分类法,对龙川县农用地分等进行了实证研究,并对各方法的分等结果有效性进行了评价,同时利用混淆矩阵探讨了样本数量对3种模型分类精度的影响。结果表明,样本数量对模型影响有差异,其中对BP神经网络和决策树模型影响较大,在较多训练样本时,模型的精度较高。在较多样本支持下,BP神经网络精度最高,但训练模型的时间较长,可解释性差;决策树模型既具有较高的精度又具有良好的可解释性;Logistic回归模型表现较差。决策树模型最适合龙川县农用地分等工作。研究结果表明,数据挖掘分类法是有效而准确的土地评价方法,有助于提高土地评价的精度和准确性,对农用地分等方...