摘要

针对行人重识别过程中,多分支结构的网络模型在提取行人特征时缺乏异构特征的问题,提出一种异构分支关联特征融合的行人重识别算法。训练阶段,将OSNet与注意力机制相结合作为主干共享网络,以学习到具有更强显著性和区分性的行人关键特征;将分支网络输出的行人特征进行水平均等分割,再提取关联条纹特征,从而全面利用位于条纹间的综合信息;设计异构特征提取模块,以增加模型学习差异特征所需的结构多样性。推理阶段,将多个特征向量融合成一个新的特征向量,再进行相似性判断。将该方法在Market-1501、DukeMTMC-reID数据集下进行有效性实验验证并对结果进行分析。所提算法能够提高行人重识别的准确率,模型所提取的特征具有较强的鲁棒性和判别力。