摘要
以连杆材料、模具预热温度、始锻温度、终锻温度、锻压速度为输入层参数,以磨损体积为输出层参数,构建了5×25×1三层拓扑结构的连杆锻压工艺优化神经网络模型,并对该模型进行了预测和验证。还对45钢连杆和40Cr钢连杆的磨损性能进行了测试分析。结果表明,连杆锻压工艺神经网络模型的平均相对训练误差为4.1%,平均相对预测误差为4.5%,具有较精准的预测能力和精度。应用BP神经网络模型优化锻压工艺的45钢连杆和40Cr钢连杆的磨损体积分别较产线现用工艺减小了38.2%、44%。神经网络优化的连杆锻压工艺的最佳参数为:材料40Cr钢、模具预热温度450℃、始锻温度1240℃、终锻温度810℃、锻压速度32 mm/s。
-
单位吉林师范大学; 吉林工程职业学院