摘要

BP神经网络模型作为一种常用的机器学习方法,被广泛应用于物种分布模型,以解析生物分布与环境因子的关系。与传统回归模型相比,该模型可以灵活处理变量间的非线性关系,但其结构复杂,在参数设置方面存在不确定性,从而影响模型的预测与应用。根据2016—2017年山东近海口虾蛄渔业资源调查与环境数据,利用BP神经网络模型构建口虾蛄资源分布模型,同时利用数据分组处理算法(group method of data handling, GMDH)、遗传算法(genetic algorithm, GA)和自适应算法(adaptive algorithm)分别对模型输入变量、初始权值和隐节点数目3方面进行优化,构建7种不同组合优化模型。结果显示,7种模型的优化效果存在明显差异,单方面和两方面组合优化模型预测性能基本保持一致;而三方面共同优化其均方根误差与残差平方和分别为0.35和1.94,较初始模型的0.52和2.40更小,且相关系数最大为0.45,表明模型优化效果最好。对比优化前后发现,口虾蛄资源密度随纬度和底层盐度变化趋势基本保持一致,而随底层温度的升高,口虾蛄资源密度存在较大差异。此外,最优模型较初始模型增加水深为关键环境因子,对口虾蛄的资源密度具有重要影响。本研究进一步开发了BP神经网络模型参数优化的方法,证明了参数优化对BP模型的预测性能具有重要影响,模型优化对于分析口虾蛄资源密度与环境因子的关系具有重要意义。