摘要
针对现有疲劳驾驶检测方法实时性差和准确率低的问题,提出一种基于深度学习的疲劳驾驶检测方法。通过深度学习模型MTCNN实现人脸检测;针对眼睛定位易受遮挡、姿势变化等因素影响的问题,通过眼睛精定位(FEL)模型精确提取眼睛区域,并通过OC-Net网络判定眼睛状态;基于PERCLOS算法和眨眼频率对驾驶员进行疲劳判定。实验结果表明,该方法的疲劳状态检测准确率为97.18%,同时满足实时性要求,且对复杂环境具有较高的鲁棒性。
-
单位桂林电子科技大学; 自动化学院