摘要
信息映射的精度和效率不足制约着自动驾驶汽车的性能。对自动驾复合信息进行数据结构和映射方式的优化以提高运算效率和精度;建立自动驾驶轨迹分类求解模型,根据操纵输入求解轨迹信息和姿态信息;通过多重拟合实现操纵、轨迹和姿态信息的参数化表达。针对自动驾驶信息的参数化特征,提出轨迹张量的概念;利用张量系统高阶次、多维度的数据结构,形成轨迹规划和轨迹跟随中两类基本映射关系的数据样本;利用样本在离线环境下充分训练深度学习系统,得到两类基本映射关系模型。经仿真试验证明,所有组别驾驶数据映射计算效率均高于常规微分方程法,且计算误差均在允许范围内。基于轨迹张量的信息映射模型可有效提升轨迹规划和跟随的精度和效率,提高自动驾驶汽车的安全性和适应性。
- 单位