摘要
针对施工现场环境复杂,基于YOLOv3的安全帽佩戴检测算法存在精度低、鲁棒性差等问题,提出一种改进YOLOv3的安全帽佩戴检测算法。使用K-means算法聚类出先验框,改进了网络输出尺度;并在输出端引入了跳跃连接构成残差模块;同时改进分类损失函数以平衡正负样本、难易样本对模型的影响。为验证该方法的有效性,在NVIDIA GTX1660Ti平台上进行了验证,实验结果表明,改进后的YOLOv3安全帽佩戴检测算法平均准确率提高了4. 84%,提升了对被遮挡的目标以及小目标的检测能力,具有较强的鲁棒性。
- 单位