摘要
利用地面三维激光扫描点云构建树木模型时,对树木点云进行枝叶分割,可以提高单木分割、骨架提取、模型构建等步骤的准确性。针对现有枝叶分割方法参数设置复杂、需要训练样本、依赖颜色强度等不足,提出了一种新的基于邻域点分布规律的枝叶分割方法。该方法遍历树木点云中的激光点,首先利用K纬树算法搜索激光点的所有R邻域点,构成邻域点集;接着对邻域点集进行主成分分析,得到三对特征值和特征向量,利用特征值计算邻域点集的分布散乱度;然后将分布散乱度与预定义阈值比较,区分枝干和叶片的候选点;最后对枝干候选点实施欧氏聚类,利用聚类的点数和尺寸获取可靠的枝干点。使用江阴大桥公园的树木点云数据进行测试。结果表明:本文提出的树木点云枝叶分离方法准确率高、点云属性要求低、简单易用,可应用于多测合一绿化测量、城市绿地生物量统计、实景三维树木模型构建等领域。
-
单位江苏省测绘工程院