摘要
为改善当前分布式网络异常区域动态时序数据挖掘过程中受冗余、干扰数据影响,造成挖掘准确率不高、误检率和漏检率居高不下的问题,提出了基于小波发分析的分布式网络异常区域动态时序数据挖掘方法,该方法通过采用小波分析的方法对分布式网络中产生的动态时序数据进行多尺度分解和平滑滤波处理,消除了冗余和干扰数据影响;在此基础上,引入网格作为索引计算将分布式网络中的动态时序数据活动空间进行网格划分,同时结合二元正态密度核函数和二进制序列法挖掘分布式网络异常区域以及异常区域动态数据的活动周期规律,实现了分布式网络异常区域动态时序数据挖掘。在MATLAB软件环境下模拟分布式网络场景,选取检测率、误检率、漏检率作为评价指标,测试了注入不同异常类型后所提方法的挖掘性能,并对比了注入不同比例异常动态时序数据时所提方法与其它方法的挖掘准确性,充分证明了所提方法的有效性与优越性。
-
单位吕梁学院