摘要
在选择滚抛磨块时,针对案例推理技术在案例相似性较低情况下无法选定有效滚抛磨块的问题,提出基于迁移学习的滚抛磨块优选方法。通过缩小源案例和新问题的分布差异,将源案例的信息迁移到新问题的求解中,优选得到滚抛磨块。首先,通过分析大量实际加工工艺案例构建案例特征E-R图;然后,对不同类型的案例特征值进行归一化预处理,经过集成流形约束及条件分布适配缩小不同类型的零件案例分布差异,并通过特征变换矩阵将不同类型的零件案例集的特征信息投射到公共空间;最后,通过在公共空间内建立滚抛磨块优选模型,得到滚抛磨块参数值。通过大量仿真研究可知,对于相似性较低的案例,通过迁移学习方法可以得到比案例推理技术更准确的结果,验证了模型良好的泛化性和实用性。基于迁移学习的滚抛磨块优选模型可以弥补传统案例推理技术进行磨块选择时的不足,为滚抛磨块的选择提供决策指导。
-
单位数学学院; 太原理工大学; 廊坊市北方天宇机电技术有限公司