摘要

提出一种改进的基于遥感图像的颜色和纹理特征进行聚类的K均值算法。该算法通过统计图像色度直方图的峰值,来获得三组聚类个数和初始聚类中心,并结合色度和基于灰度共生矩阵的纹理特征形成图像聚类特征,然后进行改进的K均值聚类,最后选择silhouette均值最大的一组作为最佳聚类结果。该方法的随机性和聚类误差比传统K均值算法小,实验结果证实了该方法的可行性和有效性。