摘要
【目的】蝴蝶属鳞翅目(Lepidoptera)昆虫,其对生存环境敏感,能够作为区域生态环境的指示物种,自然环境下蝴蝶种类自动识别对生态系统稳定有重要意义。现有研究中蝴蝶种类和数量较少,且多以标本图像作为识别对象,鉴于此,本研究构建了自然环境下蝴蝶图像数据集,提出一种以残差网络为基础的蝴蝶种类识别模型LDResNet。【方法】首先,引入可变形卷积,增强网络对不同形状蝴蝶图像的特征提取能力,获得更细粒度的特征;其次,在可变形卷积后嵌入注意力机制,增大蝴蝶特征权重,降低冗余信息干扰;最后,利用改进的深度可分离卷积降低模型参数量。【结果】在自建数据集上实验,LDResNet模型取得了87.61%的平均识别准确率,较原始模型提升了3.14%,模型参数量仅为1.04 MB。【结论】LDResNet模型相较其他模型,在平均识别准确率和参数量方面均有明显优势,本研究模型可为自然环境下的蝴蝶种类自动识别提供技术支持。
-
单位贵州大学; 昆虫研究所