摘要
针对传统神经网络模型预测模具温度准确度低,网络超参数选取困难等问题,提出一种基于烟花算法优化长短时记忆网络的模温预测模型,为铸造成型模温自动控制提供基础。首先根据铸造过程生产工艺选取影响铸造系统的主要变量,利用灰关联分析得出各变量灰色关联度并去除关联度小的变量,建立模具温度影响因子变量的数据集;其次采用烟花算法对长短时记忆网络进行优化,建立模具温度预测模型;最后与BP神经网络和长短时记忆网络预测效果进行对比。实验结果表明基于烟花算法优化的长短时记忆网络的模温预测方法绝对误差小于2. 4℃,平均绝对百分比误差小于0. 12。
- 单位