摘要

首先,用分数阶集中紧性原理,在全空间上证明一类带有电磁场和临界Hardy-Littlewood-Sobolev项的非线性Kirchhoff方程的紧性条件,以克服该方程由于无界区域以及临界项导致的紧性条件缺失问题;其次结合对称山路定理,证明该方程满足山路结构,并结合亏格理论证明该方程解的多重性.

全文