摘要
由于系统故障、传感器老化等不利因素常会导致监测数据缺失,从时间序列角度出发,针对大坝监测量中间缺失数据构建了一种基于深度学习框架下的双向CNN-BiLSTM-Attention缺失数据插补模型。该模型结合卷积神经网络与长短期记忆神经网络的算法优势,通过提取时间特征,引入注意力机制优化插补过程,同时以时间步递减的权重融合正反向插补结果。以某混凝土重力坝为例,采用该模型对大坝监测量长序列缺失数据进行插补,结果表明,双向融合插补能有效消除长序列缺失数据插补时间步的累积误差,与其他插补模型相比,这种深度学习模型具有更高的插补精度。
- 单位