摘要

电能质量扰动的分类对于电力系统的稳定具有重要意义。首先利用离散小波变换(Discrete Wavelet Transform, DWT)中的db4小波对电能质量扰动信号进行分解,得到近似分量和细节分量,提取各分量的近似系数相对能量和细节系数相对能量;然后对信号进行重构,提取小波熵和重构系数方差,构成扰动信号的特征向量;最后建立遗传算法(Genetic Algorithm, GA)优化BP神经网络的扰动分类模型,并输入特征向量对信号进行分类识别。仿真结果表明,该方法对电能质量扰动的分类准确率较高。

全文