摘要

训练样本选取对最小二乘支持向量机(LSSVM)的泛化能力有较大影响,为了提高网络流量预测精度,提出一种最优训练样本子集的LSSVM网络流量预测模型(IFCM-LSSVM)。首先采用密度方法识别和剔除网络流量数据中的孤立点,消除孤立点对模糊均值聚类(FCM)聚类结果的不利影响;然后采用FCM算法对处理后网络流量数据进行聚类,并根据预测点输入向量与聚类中心的最小距离选择最优训练集,加强训练集规律性,减少LSSVM对训练集的依赖性;最后采用非线性预测能力强的LSSVM对训练集进行学习建立网络流量预测模型,并采用仿真实验对模型性能测试。仿真结果表明,相对于对比模型,IFCM-LSSVM提高了网络流量的预测精度,加快了模型的训练速度,预测结果更加稳定、可靠。

  • 单位
    浙江水利水电学院