摘要

为保留脑电(Electroencephalogram,EEG)空间信息的同时充分挖掘EEG时序相关信息,提出了一种三维卷积神经网络(3-Dimensional Convolutional Neural Networks,3D-CNN)结合双向长短期记忆神经网络(Bidirectional Long Short-term Memory Neural Networks,BLSTM)的混合神经网络(3DCNN-BLSTM);为验证该模型的分类性能,在DEAP数据集和SEED数据集上进行情感识别实验.实验结果表明3DCNN-BLSTM模型能有效学习EEG多通道间的相关性与时间维度信息且提高了情感分类性能:在DEAP数据集的二分类实验中,唤醒度和效价的情感识别平均准确率分别为93.56%和93.21%;在DEAP数据集的四分类实验中,情感识别平均准确率为90.97%;在SEED数据集的三分类实验中,情感识别平均准确率为98.90%.