摘要
BP(Back Propagation)网络在用于水质预测时,存在运算速度慢和易陷入局部最优的缺点,与传统的BP网络相比,广义回归神经网络(General Regression Neural Network,GRNN)的计算速度快,预测精度较高。光滑因子σ是广义回归神经网络的唯一待确定参数,它对网络的预测性能影响很大,本文采用量子粒子群算法(quantum particle swarm algorithm,QP SO)优化算法对光滑因子进行估算,并通过GRNN构建水质预测模型。实验表明:该模型能较好地预测氨氮变化趋势,为科学管理水质提供必要依据。
-
单位江南大学; 无锡信捷电气股份有限公司