摘要
短期电力负荷预测在电力系统安全调度、经济运行方面起到关键作用。在用最小二乘支持向量机进行负荷预测时,参数选择将直接影响预测精度。为了提高LSSVM负荷预测精度,文中提出一种基于Levy变异自适应视野人工鱼群-蛙跳算法对LSSVM进行参数优化的方法。以某县负荷、天气等历史数据对LSSVM进行训练,建立LAVAFSA-SFLA-LSSVM、AFSA-LSSVM、LAFSA-SFLA-LSSVM共3种预测模型,对该地区某日24 h的电力负荷进行预测。算例结果表明,LAVAFSA-SFLA-LSSVM预测精度比AFSA-LSSVM和LAFSA-SFLA-LSSVM更高,预测误差更小。
-
单位河南理工大学; 自动化学院