摘要

语音识别是人机交互的重要方式,针对传统语音识别系统对含噪语音识别性能较差、特征选择不恰当的问题,提出一种基于迁移学习的深度自编码器循环神经网络模型。该模型由编码器、解码器以及声学模型组成,其中,声学模型由堆栈双向循环神经网络构成,用于提升识别性能;编码器和解码器均由全连接层构成,用于特征提取。将编码器结构及参数迁移至声学模型进行联合训练,在含噪Google Commands数据集上的实验表明本文模型有效增强了含噪语音的识别性能,并且具有较好的鲁棒性和泛化性。