摘要

本发明公开了一种基于持续学习的雷达辐射源的分级识别方法,具体包括:首先对雷达信号进行包络分析和双谱分析,按照型号标签和个体标签训练一个型号识别网络和若干各型号下的个体识别网络,通过“型号-个体”分级识别方法先识别数据所属的雷达型号,再在对应型号内识别数据所属的雷达个体。这种方法在雷达个体数量级较大时,可以得到远高于使用单个个体识别网络方法的准确率。网络的训练过程以持续学习的方式进行,具体来说是使用新模型和旧模型对数据进行特征向量提取和已知类别的类嵌入向量计算,以余弦相似性为度量,通过缩小这些新旧向量之间的差异,使模型在对新类别数据进行学习的同时,还最大程度的保证其对旧类别个体的识别能力不下降。