研究Marshall-Olkin扩展指数分布的可靠性指标。基于该分布的广义逐步混合截尾模型,通过经典估计和贝叶斯估计给出该分布的未知参数估计。利用数值迭代方法和渐近正态理论,给出未知参数的最大似然估计值及渐进置信区间。在先验分布为伽马分布的条件下,利用Metropolis-Hastings抽样算法得到了未知参数的贝叶斯估计值和最大后验密度可信区间。数值模拟结果表明,贝叶斯估计的均方误差和区间长度均优于经典估计方法。