摘要
为提升回采工作面瓦斯涌出量的预测能力,提出一种基于门控循环单元(gate recurrent unit,GRU)预测模型,利用瓦斯涌出相关影响因素对瓦斯涌出量进行预测。对麻雀搜索算法的初始化过程加以改进,采用改进后的麻雀算法对影响GRU预测模型的超参数进行优化,提高瓦斯涌出量的预测精度;利用Ada Boost算法的自适应增强能力,构建自适应增强优化的瓦斯涌出量预测模型(ISSA-GRU-AdaBoost模型),并通过核主成分分析提取预测指标特征,提升预测的快速性。将所建模型与PSO-ELM模型、QPSO-LSTM模型、PSO-BP模型,以及SSA-SVM模型进行对比实验,结果表明ISSA-GRU-AdaBoost预测模型的预测精度最高。
- 单位