摘要
针对列车轮对轴承故障信号复杂,尤其是在多故障并发情况下难以准确诊断的问题,提出了基于频率窗经验小波变换(EWT)的轮对轴承多故障诊断方法。首先对轴承多故障振动信号进行Fourier变换,引入一个带宽可变的滑动频率窗分割信号频谱;然后利用水循环优化算法(WCA),通过所提出的幅值包络谱相关峭度(ESCK)指标,自适应地确定轴承多故障中各单一故障所对应的最优频率窗位置;最后通过经验小波变换分解出单一故障信号,采用包络解调分析实现轴承复合故障准确诊断。轮对轴承多故障仿真和实际应用结果表明,所提方法能有效分离列车轮对轴承复合故障中的典型故障,有效降低轮对轴承多故障诊断的误诊率,具有一定的应用价值。
- 单位