摘要
为了推广激光雷达技术在森林蓄积量估测计量方面的应用,本研究以东北林区云冷杉林、落叶松林、红松林和樟子松林4种典型针叶林为对象,基于机载激光雷达获取的点云数据提取特征变量,结合800块地面样地数据,采用逐步回归方法和偏最小二乘方法,建立4种针叶林的蓄积量模型。结果表明:偏最小二乘法建立的模型精度优于逐步回归方法(ΔR2=0.05~0.15,ΔRRMSE=2.6%~4.2%);在参与建模的3类点云特征变量中,贡献最大的是点云高度变量(被选择26次),其他变量有一定的辅助作用(分别被选择12次和11次);使用偏最小二乘方法建立的林分蓄积量模型中,红松林(R2=0.79,RMSE=60.92,RRMSE=22.9%)和落叶松林(R2=0.76,RMSE=28.39,RRMSE=25.8%)的精度最高,云冷杉林(R2=0.81,RMSE=46.96,RRMSE=27.7%)次之,樟子松林(R2=0.50,RMSE=55.49,RRMSE=30.4%)的精度稍低。研究结果为东北林区4种典型针叶林蓄积量估测提供了一种有效的方法。
- 单位