摘要

针对高光谱影像分类问题,提出了基于深度卷积循环神经网络的高光谱影像空谱特征分类方法。首先将高光谱数据立方体看作一组特征序列;然后利用深度卷积循环神经网络构建特征序列的依赖关系,并采用"预训练+微调"的训练策略对深层网络模型进行训练,从而使得所设计的深层网络在训练样本较少的情况下也能得到更加充分的优化。在Pavia大学和Indian Pines数据集上的试验结果表明,构建的深度卷积循环神经网络的分类精度比RNN方法分别提升了9.49%和5.8%。

  • 单位
    信息工程大学