摘要

针对蚁群算法收敛速度慢,容易陷入局部最优的问题,提出了一种基于聚度的自适应动态混沌蚁群算法(AACS)。在迭代前期利用聚度来衡量解的多样性,自适应调节局部信息素分布,同时引入混沌算子来增加种群多样性,避免算法陷入局部最优,从而提高解的精度;在迭代后期去掉混沌算子,减少混沌扰动性,来提高算法的收敛速度。将AACS用于TSP问题,仿真结果表明,该算法较ACS和MMAS算法减少了搜索时间,并且提高了解的质量,其平衡了多样性与收敛性之间的矛盾,整体性能优于其他两种算法。