摘要

提出基于均值偏移的粒子滤波算法。该算法融合了颜色特征和方向梯度特征对人体行为实施跟踪。HSV颜色模型采用带宽自适应的改进策略,有效地实现了对尺度变化目标的跟踪;方向梯度特征的融合,提高了算法在复杂环境中应对光线变化和相似目标遮挡等情况的适应性。针对粒子退化问题,在特征融合的粒子滤波基础上引入具有聚类作用的Mean Shift算法,从而可以用较少数量的粒子达到较好的跟踪效果。仿真实验表明,该算法具有较好的准确性、鲁棒性与实时性。