摘要

恶意软件的爆炸性增长,以及对用户机和网络环境造成的严重威胁,逐渐成为了网络空间安全领域的主要矛盾。当前传统的基于特征码的静态扫描技术和基于软件行为的恶意软件检测技术容易产生误报和漏报,渐渐无法满足信息安全领域的新要求。为了解决这些问题,提出基于卷积神经网络CNN的恶意代码检测技术。利用Cuckoo沙箱系统来模拟运行环境并提取分析报告;通过编写Python脚本对分析报告进行预处理;搭建深度学习CNN训练模型来实现对恶意代码的检测,并将其与机器学习以及常见的杀毒软件进行比较。实验结果表明,该方法在相比之下更具有优势,并且取得了较好的检测效果,具有更高的可行性。