摘要

为提高中文文本摘要抽取的准确性与应用于不同类型文本的有效性,论文结合MMR算法、TextRank算法、文本主题以及篇章结构信息,提出一种基于集成学习的无监督中文文本摘要自动抽取模型。使用每种抽取方法单独抽取关键句,然后采用投票机制对各方法抽取出的句子进行加权投票,对多种方法共同抽取出的句子赋予更高的权重。实验结果表明,该模型应对不同结构文本泛化能力更强,在抽取单句摘要时Rouge_1得分要高于最优的单一抽取算法得分,Rouge_2、Rouge_L得分接近最优结果;在抽取多句摘要时Rouge_1、Rouge_2、Rouge_L得分要高于其他单一方法,比最优的单一抽取算法分别提高了1.7个、1.3个、1.5个百分点,相比传统摘要抽取算法提取的摘要质量更高。

  • 单位
    武汉邮电科学研究院