摘要
鉴于行人的运动轨迹会受到邻域行人持续性的影响,传统工作在建模过程中缺乏对此类型影响的考虑,提出了一个基于多重空间图神经网络的行人轨迹预测方法.此方法包含一个多重空间融合模块,将多个时刻的空间结合在一起,构建了一个多重空间图神经网络,能够将邻域行人的历史轨迹对目标行人的影响也融合进来,对多人之间跨越时间和空间的交互信息进行建模与刻画;随后将Transformer应用到多重空间图网络上,能够自适应地度量行人之间跨越时间和空间的交互程度.本文方法在典型公开数据集ETH和UCY上进行测试,并与同类模型进行对比.实验结果表明:本文方法在ADE和FDE两项指标上相比于比同类方法提升了12%和15%,能预测出与真实轨迹更贴合的行人轨迹.
- 单位