摘要
针对现有的基于深度学习的调制识别算法训练速度慢、识别率不高和识别调制类型少的问题,提出了一种基于循环谱和局部感受野超限学习机(ELM-LRF)的调制识别算法。首先,提取调制信号的循环谱图并对其进行归一化预处理,然后将处理后的循环谱分成训练集和测试集,我们用训练集训练ELM-LRF,最后用测试集对网络进行测试。对11种数字调制和模拟调制信号进行分类识别,实验结果表明,在信噪比大于0 dB时,本文算法的总体识别率超过了95%,同时相比于基于传统深度学习的调制识别算法,训练时间大大减少,验证了ELM-LRF是一种高效快速深度学习方法,具有较大的研究价值。
- 单位