摘要

本文提出一种自适应感受野卷积神经网络结构,简称ARFN(Adaptive Receptive Field Network)。通过卷积核的自主选择机制来实现感受野的动态调整,更大程度上获取残差网络低层特征的空间信息并与高层特征进行自适应融合,弥补高层特征空间信息不足的缺陷。同时,在残差块中加入一种轻量的新型注意力机制,通过一维空洞卷积实现特征通道间适当的非线性交互,有效地学习各通道特征的权重。相较于一些主流的注意力模块而言,在保证性能提升的同时大幅度缩减了参数量。通过在公开数据集上进行图像分类和目标检测实验验证网络的有效性,结果表明本文提出的网络结构在视觉任务上性能都有较大提升。