摘要
近年来数据同化(DA)被引入湍流动力学研究中,通过融合实验测量和数值计算,提高了实验测量的精度和广度,改善了数值模拟的预测性能。实验观测、预测模型和同化算法是数据同化的三要素,湍流研究中的实验观测包括热线风速仪、粒子图像测速法(PIV)、压力传感器等局部测量数据,预测模型主要指流动控制方程及湍流封闭方程,而同化算法包括贝叶斯推断、集合卡尔曼滤波(EnKF)、伴随等。稳态数据同化一般结合雷诺平均Navier-Stokes(RANS)模型方程,从重新标定模型常数、修正涡黏模型方程形式误差、修正雷诺应力项等方面着手。非稳态的数据同化一般包括四维变分(4DVar)等时间连续的数据同化方式以及顺序数据同化。4DVar通过时间正向和逆向积分迭代,存储量和计算量都非常大。顺序数据同化不需要时间逆向积分,可以在若干时刻对实验观测进行间断地植入,正向求解整个系统。另外,随着人工智能的飞速发展,湍流数据同化研究也向智能化迈进。对于纯数据驱动的湍流机器学习,其缺乏物理本质的约束,而基于物理信息的机器学习在物理本质上与数据同化是一致的。
- 单位