摘要

为了解决由于入侵检测样本数据多和冗余属性导致的BP神经网络训练速度慢和效率低的问题,本文提出利用模糊k均值聚类算法对样本数据依据和目标属性相关性和隶属度强弱进行聚类,优化神经网络权值。实验表明,该算法检测的准确率较高,网络入侵检测的性能和效率都得到了提高。