摘要
实体关系抽取能够从文本中提取事实三元组信息,这对于构建大规模的知识图谱是十分重要的。在现有的研究中,通常以先进行实体识别,而后进行关系分类或者进行统一标注的方式来完成这一任务,虽然这些方法能够使关系抽取任务变得更易实现,并且模型的网络框架灵活性更高,但是也存在误差积累和暴露误差等问题,且对于关系抽取中的关系重叠和实体嵌套等重难点问题不能够很好的处理。为了解决上述存在的问题,文章构建一种基于深度学习的中文实体关系联合抽取模型。该模型由基于评分的分类器和特定关系的角标记策略以及分区过滤网络构成,首先通过分区过滤网络,将输入的文本划分成三个分区,实体分区和关系分区以及共享分区,能够确保实体识别任务和关系抽取任务进行更好的双向交互;接着应用特定关系的角标记策略来解码实体信息,最后通过一个基于评分的分类器来输出事实关系三元组。实验表明,提出的方法能够改善传统方法带来的误差积累和交互缺失以及实体冗余等问题,提高了三元组抽取的准确率。