摘要
随着无线局域网的广泛应用,海量的网络流量数据产生了大量的冗余特征,影响了网络入侵检测效果,给无线局域网带来安全问题,因此提出一种基于深度学习技术的入侵检测模型。一方面,该模型使用堆叠稀疏自动编码器(Stacked Sparse Auto-Encoder,SSAE)和正则项提取特征,避免了模型过拟合和特征提取不完整的问题。另一方面,使用一维残差网络(Residual Networks,ResNets)进行网络流量分类,以AWID-CLS-R数据集为例进行实验。结果表明,多数分类检测准确率大于0.8,且模型运行稳定。
- 单位