摘要

大数据背景下零售银行业的竞争日益加剧,根据客户的特征,将客户进行细分,为客户提供差异化的产品和服务是零售银行实现精准营销的有效途径。K-Means聚类算法是客户细分中的一种重要算法,它的基本思想是将具有更多相同特性的样本聚集到一个类中,使不同类中的样本之间尽可能的远离,而同一类中的样本之间尽可能的相近。为了提高客户细分的精度,提出一种自组织特征映射神经网络(SOM)的KMeans聚类算法(SOM-K-Means)。该算法可以解决K-Means聚类算法随机确定聚类个数和初始聚类中心等影响聚类结果准确性的问题。对某零售银行实证研究表明,SOM-K-Means聚类算法对购买某产品客户的数据进行有效的挖掘分析,根据聚类之间客户的不同特征,为不同客户群体提供个性化营销策略。