摘要
为了获得目标边缘清晰且细节丰富的红外与可见光融合图像,以前馈去噪卷积神经网络(Denoising Convolutional Neural Network, DnCNN)的骨干网络为基础,从网络架构和损失函数两方面对其进行全面改进,提出基于相邻特征融合的红外与可见光图像自适应融合网络(Adjacent Feature Combination Based Adaptive Fusion Network, AFCAFNet).具体地,采取扩大通道数及双分支特征交换机制策略将DnCNN前段若干相邻卷积层的特征通道进行充分交叉与融合,增强特征信息的提取与传递能力.同时,取消网络中所有的批量归一化层,提高计算效率,并将原修正线性激活层替换为带泄露线性激活层,改善梯度消失问题.为了更好地适应各种不同场景内容图像的融合,基于VGG16图像分类模型,分别提取红外图像和可见光图像梯度化特征响应值,经过归一化处理后,分别作为红外图像和可见光图像参与构建均方误差、结构化相似度和总变分三种类型损失函数的加权系数.在基准测试数据库上的实验表明,AFCAFNet在主客观评价上均具有一定优势.在各项客观评价指标中综合性能较优,在主观视觉效果上,在特定目标边缘上较清晰、纹理细节也较丰富,符合人眼视觉感知特点.
-
单位南昌大学附属感染病医院