摘要

粒子滤波算法本身存在着粒子退化问题,对于衰减趋势变化剧烈的模型,难以获得精确的预测结果,限制了算法的适用范围。针对以上问题对粒子滤波进行改进,通过引入粒子群优化算法中的粒子更新机制,优化粒子的全局位置信息,进而重新分配各粒子权重,降低了重采样阶段粒子重置的比例,改善了算法固有的粒子退化现象,达到改进算法、提升算法预测性能的目的;同时,为验证算法的实际效果,以马里兰大学先进寿命周期工程中心(CALCE)发布的锂电池容量实验数据集为基础,分别使用传统粒子滤波算法与改进的算法进行剩余寿命预测仿真。经过对比发现:改进算法误差下降33.6%,可获得更为精确的预测结果,重采样率下降18.3%,粒子退化问题得到改善。

  • 单位
    空军工程大学