针对汽车涂装车间中的作业优化排序问题,提出一种基于启发式Q学习的优化算法。首先,建立包括满足总装车间生产顺序和最小化喷枪颜色切换次数的多目标整数规划模型。将涂装作业优化排序问题抽象为马尔可夫过程,建立基于启发式Q算法的求解方法。通过具体案例,对比分析了启发式Q学习、Q学习、遗传算法三种方案的优劣。结果表明:在大规模问题域中,启发式Q学习算法具有寻优效率更高、效果更好的优势。本研究为机器学习算法在汽车涂装作业优化排序问题的应用提出了新思路。