摘要

针对传统多任务优化算法(MTEA)存在负向知识迁移、迁移算子效率低下等问题,提出一种基于超粒子引导的自适应知识迁移的多任务差分进化算法(SAKT_MFDE).首先,通过任务之间的相似程度自适应地调节任务之间的交配概率,增大任务之间的正向迁移;其次,利用超粒子引导算法的搜索方向,进一步提升算法整体的优化效率;最后,通过多任务基准函数进行仿真实验来评价改进算法的寻优性能.实验结果表明,所提出算法可以有效规避任务之间的负向迁移,提高相似度较低的任务组的优化性能.

全文