摘要

针对目前谱聚类算法的相似图包含较多错误社区信息的问题,引入了概率矩阵的概念,提出了一种改进的谱聚类社区发现算法。该算法首先利用马尔可夫过程计算节点间的转移概率,并基于转移概率构建复杂网络的概率矩阵;然后以均值概率矩阵重新构造相似图;最后通过优化归一化切割函数实现社区划分。采用人工网络和现实网络与其他典型算法进行对比实验,实验结果表明,该算法能够更加精准地划分社区,具有更加良好的聚类性能。