针对目前的人脸识别算法在面对不同姿态下的人脸图像时识别率低的问题,提出了一种基于改进的卷积神经网络的算法。该算法通过对经典的卷积神经网络Le Net-5的卷积核数目、卷积核尺寸、池化层方式和正则化手段等参数进行了优化改进,从而能对多姿态人脸图像特征进行有效提取。仿真实验结果表明,该算法在识别率与识别时间上均有显著提高。